Deep vs. shallow networks : An approximation theory perspective
نویسندگان
چکیده
The paper briefly reviews several recent results on hierarchical architectures for learning from examples, that may formally explain the conditions under which Deep Convolutional Neural Networks perform much better in function approximation problems than shallow, one-hidden layer architectures. The paper announces new results for a non-smooth activation function – the ReLU function – used in present-day neural networks, as well as for the Gaussian networks. We propose a new definition of relative dimension to encapsulate different notions of sparsity of a function class that can possibly be exploited by deep networks but not by shallow ones to drastically reduce the complexity required for approximation and learning. This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF 1231216. H.M. is supported in part by ARO Grant W911NF-15-1-0385. 1 ar X iv :1 60 8. 03 28 7v 1 [ cs .L G ] 1 0 A ug 2 01 6
منابع مشابه
I - theory on depth vs width : hierarchical function composition
Deep learning networks with convolution, pooling and subsampling are a special case of hierarchical architectures, which can be represented by trees (such as binary trees). Hierarchical as well as shallow networks can approximate functions of several variables, in particular those that are compositions of low dimensional functions. We show that the power of a deep network architecture with resp...
متن کاملWhy Deep Neural Networks for Function Approximation?
Recently there has been much interest in understanding why deep neural networks are preferred to shallow networks. We show that, for a large class of piecewise smooth functions, the number of neurons needed by a shallow network to approximate a function is exponentially larger than the corresponding number of neurons needed by a deep network for a given degree of function approximation. First, ...
متن کاملOn the Compressive Power of Deep Rectifier Networks for High Resolution Representation of Class Boundaries
This paper provides a theoretical justification of the superior classification performance of deep rectifier networks over shallow rectifier networks from the geometrical perspective of piecewise linear (PWL) classifier boundaries. We show that, for a given threshold on the approximation error, the required number of boundary facets to approximate a general smooth boundary grows exponentially w...
متن کاملShallow vs. Deep Sum-Product Networks
We investigate the representational power of sum-product networks (computation networks analogous to neural networks, but whose individual units compute either products or weighted sums), through a theoretical analysis that compares deep (multiple hidden layers) vs. shallow (one hidden layer) architectures. We prove there exist families of functions that can be represented much more efficiently...
متن کاملDeep Component Analysis via Alternating Direction Neural Networks
Despite a lack of theoretical understanding, deep neural networks have achieved unparalleled performance in a wide range of applications. On the other hand, shallow representation learning with component analysis is associated with rich intuition and theory, but smaller capacity often limits its usefulness. To bridge this gap, we introduce Deep Component Analysis (DeepCA), an expressive multila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1608.03287 شماره
صفحات -
تاریخ انتشار 2016